Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0005824, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470179

RESUMO

Alternaria alternata FB1 is a marine fungus identified as a candidate for plastic degradation in our previous study. This fungus has been recently shown to produce secondary metabolites with significant antimicrobial activity against various pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and the notorious aquaculture pathogen Vibrio anguillarum. The antibacterial compounds were purified and identified as alternariol (AOH) and its derivative, alternariol monomethyl ether (AME). We found that AOH and AME primarily inhibited pathogenic bacteria (MRSA or V. anguillarum) by disordering cell division and some other key physiological and biochemical processes. We further demonstrated that AOH could effectively inhibit the unwinding activity of MRSA topoisomerases, which are closely related to cell division and are the potential action target of AOH. The antibacterial activities of AOH and AME were verified by using zebrafish as the in vivo model. Notably, AOH and AME did not significantly affect the viability of normal human liver cells at concentrations that effectively inhibited MRSA or V. anguillarum. Finally, we developed the genetic operation system of A. alternata FB1 and blocked the biosynthesis of AME by knocking out omtI (encoding an O-methyl transferase), which facilitated A. alternata FB1 to only produce AOH. The development of this system in the marine fungus will accelerate the discovery of novel natural products and further bioactivity study.IMPORTANCEMore and more scientific reports indicate that alternariol (AOH) and its derivative alternariol monomethyl ether (AME) exhibit antibacterial activities. However, limited exploration of their detailed antibacterial mechanisms has been performed. In the present study, the antibacterial mechanisms of AOH and AME produced by the marine fungus Alternaria alternata FB1 were disclosed in vitro and in vivo. Given their low toxicity on the normal human liver cell line under the concentrations exhibiting significant antibacterial activity against different pathogens, AOH and AME are proposed to be good candidates for developing promising antibiotics against methicillin-resistant Staphylococcus aureus and Vibrio anguillarum. We also succeeded in blocking the biosynthesis of AME, which facilitated us to easily obtain pure AOH. Moreover, based on our previous results, A. alternata FB1 was shown to enable polyethylene degradation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Micotoxinas , Vibrio , Animais , Humanos , Peixe-Zebra , Alternaria , Lactonas/farmacologia , Lactonas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Micotoxinas/metabolismo
2.
J Agric Food Chem ; 72(10): 5283-5292, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38429098

RESUMO

The increasing emergence of multidrug-resistant pathogens and development of biopreservatives in food industries has increased the demand of novel and safe antimicrobial agents. In this study, a marine bacterial strain Bacillus licheniformis M1 was isolated and exhibited obvious antimicrobial activities against foodborne pathogens, especially against methicillin-resistant Staphylococcus aureus. The antimicrobial agent was purified and identified as a novel antimicrobial peptide, which was designated as bacipeptin, and the corresponding mechanism was further investigated by electron microscopy observation and transcriptomic analysis with biochemical validation. The results showed that bacipeptin could reduce the virulence of methicillin-resistant Staphylococcus aureus and exerted its antimicrobial activity by interfering with histidine metabolism, inducing the accumulation of reactive oxygen species and down-regulating genes related to Na+/H+ antiporter and the cell wall, thus causing damage to the cell wall and membrane. Overall, our study provides a novel natural product against foodborne pathogens and discloses the corresponding action mechanism.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Parede Celular , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
mBio ; 15(4): e0000424, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417116

RESUMO

Chloroflexota bacteria are abundant and globally distributed in various deep-sea ecosystems. It has been reported based on metagenomics data that two deep-sea Chloroflexota lineages (the SAR202 group and Dehalococcoidia class) have the potential to drive sulfur cycling. However, the absence of cultured Chloroflexota representatives is a significant bottleneck toward understanding their contribution to the deep-sea sulfur cycling. In this study, we find that Phototrophicus methaneseepsis ZRK33 isolated from deep-sea sediment has a heterotrophic lifestyle and can assimilate sulfate and thiosulfate. Using combined physiological, genomic, proteomic, and in situ transcriptomic methods, we find that strain ZRK33 can perform assimilatory sulfate reduction in both laboratory and deep-sea conditions. Metabolism of sulfate or thiosulfate by strain ZRK33 significantly promotes the transport and degradation of various macromolecules and thereby stimulates the energy production. In addition, metagenomic results show that genes associated with assimilatory and dissimilatory sulfate reduction are ubiquitously distributed in the metagenome-assembled genomes of Chloroflexota members derived from deep-sea sediments. Metatranscriptomic results also show that the expression levels of related genes are upregulated, strongly suggesting that Chloroflexota bacteria may play undocumented roles in deep-sea sulfur cycling. IMPORTANCE: The cycling of sulfur is one of Earth's major biogeochemical processes and is closely related to the energy metabolism of microorganisms living in the deep-sea cold seep and hydrothermal vents. To date, some of the members of Chloroflexota are proposed to play a previously unrecognized role in sulfur cycling. However, the sulfur metabolic characteristics of deep-sea Chloroflexota bacteria have never been reported, and remain to be verified in cultured deep-sea representatives. Here, we show that the deep-sea Chloroflexota bacterium ZRK33 can perform sulfate assimilation in both laboratory and deep-sea conditions, which expands our knowledge of the sulfur metabolic potential of deep-sea Chloroflexota bacteria. We also show that the genes associated with assimilatory and dissimilatory sulfate reduction ubiquitously distribute in the deep-sea Chloroflexota members, providing hints to the roles of Chloroflexota bacteria in deep-sea sulfur biogeochemical cycling.


Assuntos
Chloroflexi , Microbiota , Proteômica , Multiômica , Tiossulfatos/metabolismo , Oxirredução , Bactérias/genética , Chloroflexi/genética , Enxofre/metabolismo , Filogenia
4.
Elife ; 122024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265071

RESUMO

Planctomycetes bacteria are ubiquitously distributed across various biospheres and play key roles in global element cycles. However, few deep-sea Planctomycetes members have been cultivated, limiting our understanding of Planctomycetes in the deep biosphere. Here, we have successfully cultured a novel strain of Planctomycetes (strain ZRK32) from a deep-sea cold seep sediment. Our genomic, physiological, and phylogenetic analyses indicate that strain ZRK32 is a novel species, which we propose be named: Poriferisphaera heterotrophicis. We show that strain ZRK32 replicates using a budding mode of division. Based on the combined results from growth assays and transcriptomic analyses, we found that rich nutrients, or supplementation with NO3- or NH4+ promoted the growth of strain ZRK32 by facilitating energy production through the tricarboxylic acid cycle and the Embden-Meyerhof-Parnas glycolysis pathway. Moreover, supplementation with NO3- or NH4+ induced strain ZRK32 to release a bacteriophage in a chronic manner, without host cell lysis. This bacteriophage then enabled strain ZRK32, and another marine bacterium that we studied, to metabolize nitrogen through the function of auxiliary metabolic genes. Overall, these findings expand our understanding of deep-sea Planctomycetes bacteria, while highlighting their ability to metabolize nitrogen when reprogrammed by chronic viruses.


Assuntos
Bacteriófagos , Planctomicetos , Anaerobiose , Filogenia , Bactérias , Nitrogênio
5.
mBio ; 14(4): e0095823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37551978

RESUMO

Wall-less bacteria are broadly distributed in diverse habitats. They evolved from a common ancestor within the Firmicutes phylum through reductive evolution. Here, we report the cultivation, characterization, and polyphasic taxonomic analysis of the novel free-living wall-less bacterium, Hujiaoplasma nucleasis zrk29. We demonstrated that strain zrk29 had a strong ability to degrade DNA and RNA both under laboratory conditions and in the deep sea. We found that nucleic acids induced strain zrk29 to release chronic bacteriophages which supported strain zrk29 and other marine bacteria to metabolize nucleic acids without lysing host cells. We also showed that strain zrk29 tolerated high hydrostatic pressure via two pathways: (i) by transporting cations into its cells to increase intracellular osmotic pressure and (ii) by adjusting the unsaturated fatty acid chain content in its cell membrane phospholipids to increase cell membrane fluidity. This study extends our understanding of free-living wall-less bacteria and provides a useful model to explore the unique adaptation mechanisms of deep-sea microbes. IMPORTANCE The unique physiology and survival strategies of the Tenericutes bacterium-a typical wall-less bacterium-have fascinated scientists and the public, especially in extreme deep-sea environments where there is high hydrostatic pressure (HHP) and limited availability of nutrients. Here, we have isolated a novel free-living Tenericutes strain from deep-sea sediment and have found that it metabolizes nucleic acids with the support of chronic bacteriophages. This Tenericutes strain tolerates HHP stress by increasing intracellular osmotic pressure and the unsaturated fatty acid chain content of phospholipids in its cell membrane. Our results provide insights into the unique physiology of deep-sea free-living Tenericutes bacteria and highlight the significant role that chronic bacteriophages play in assisting wall-less bacteria to adapt to harsh conditions.


Assuntos
Ácidos Nucleicos , Pressão Hidrostática , Bactérias/metabolismo , Fosfolipídeos/metabolismo , Ácidos Graxos Insaturados/metabolismo
6.
Biochem Biophys Res Commun ; 671: 10-17, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37290279

RESUMO

α-amylase plays a crucial role in regulating metabolism and health by hydrolyzing of starch and glycogen. Despite comprehensive studies of this classic enzyme spanning over a century, the function of its carboxyl terminal domain (CTD) with a conserved eight ß-strands is still not fully understood. Amy63, identified from a marine bacterium, was reported as a novel multifunctional enzyme with amylase, agarase and carrageenase activities. In this study, the crystal structure of Amy63 was determined at 1.8 Å resolution, revealing high conservation with some other amylases. Interestingly, the independent amylase activity of the carboxyl terminal domain of Amy63 (Amy63_CTD) was newly discovered by the plate-based assay and mass spectrometry. To date, the Amy63_CTD alone could be regarded as the smallest amylase subunit. Moreover, the significant amylase activity of Amy63_CTD was measured over a wide range of temperature and pH, with optimal activity at 60 °C and pH 7.5. The Small-angle X-ray scattering (SAXS) data showed that the high-order oligomeric assembly gradually formed with increasing concentration of Amy63_CTD, implying the novel catalytic mechanism as revealed by the assembly structure. Therefore, the discovery of the novel independent amylase activity of Amy63_CTD suggests a possible missing step or a new perspective in the complex catalytic process of Amy63 and other related α-amylases. This work may shed light on the design of nanozymes to process marine polysaccharides efficiently.


Assuntos
Amilases , alfa-Amilases , Espalhamento a Baixo Ângulo , Difração de Raios X , alfa-Amilases/química , alfa-Amilases/metabolismo , Amido/metabolismo , Concentração de Íons de Hidrogênio
7.
Front Microbiol ; 14: 1128064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089553

RESUMO

Gas production from several metabolic pathways is a necessary process that accompanies the growth and central metabolism of some microorganisms. However, accurate and rapid nondestructive detection of gas production is still challenging. To this end, gas chromatography (GC) is primarily used, which requires sampling and sample preparation. Furthermore, GC is expensive and difficult to operate. Several researchers working on microbial gases are looking forward to a new method to accurately capture the gas trends within a closed system in real-time. In this study, we developed a precise quantitative analysis for headspace gas in Hungate tubes using Raman spectroscopy. This method requires only a controlled focus on the gas portion inside Hungate tubes, enabling nondestructive, real-time, continuous monitoring without the need for sampling. The peak area ratio was selected to establish a calibration curve with nine different CH4-N2 gaseous mixtures and a linear relationship was observed between the peak area ratio of methane to nitrogen and their molar ratios (A(CH4)/A(N2) = 6.0739 × n(CH4)/n(N2)). The results of in situ quantitative analysis using Raman spectroscopy showed good agreement with those of GC in the continuous monitoring of culture experiments of a deep-sea cold seep methanogenic archaeon. This method significantly improves the detection efficiency and shows great potential for in situ quantitative gas detection in microbiology. It can be a powerful complementary tool to GC.

8.
EMBO J ; 42(12): e112514, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946144

RESUMO

Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.


Assuntos
Proteômica , Tiossulfatos , Tiossulfatos/metabolismo , Bactérias/metabolismo , Oxirredução , Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Microbiol Spectr ; 11(3): e0007323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995243

RESUMO

Plastic wastes have been recognized as the most common and durable marine contaminants, which are not only found in the shallow water, but also on the sea floor. However, whether deep-sea microorganisms have evolved the capability of degrading plastic remains elusive. In this study, a deep-sea bacterium Bacillus velezensis GUIA was found to be capable of degrading waterborne polyurethane. Transcriptomic analysis showed that the supplement of waterborne polyurethane upregulated the expression of many genes related to spore germination, indicating that the presence of plastic had effects on the growth of strain GUIA. In addition, the supplement of waterborne polyurethane also evidently upregulated the expressions of many genes encoding lipase, protease, and oxidoreductase. Liquid chromatography-mass spectrometry (LC-MS) results showed that potential enzymes responsible for plastic degradation in strain GUIA were identified as oxidoreductase, protease, and lipase, which was consistent with the transcriptomic analysis. In combination of in vitro expression and degradation assays as well as Fourier transform infrared (FTIR) analysis, we demonstrated that the oxidoreductase Oxr-1 of strain GUIA was the key degradation enzyme toward waterborne polyurethane. Moreover, the oxidoreductase Oxr-1 was also shown to degrade the biodegradable polybutylene adipate terephthalate (PBAT) film indicating its wide application potential. IMPORTANCE The widespread and indiscriminate disposal of plastics inevitably leads to environmental pollution. The secondary pollution by current landfill and incineration methods causes serious damage to the atmosphere, land, and rivers. Therefore, microbial degradation is an ideal way to solve plastic pollution. Recently, the marine environment is becoming a hot spot to screen microorganisms possessing potential plastic degradation capabilities. In this study, a deep-sea Bacillus strain was shown to degrade both waterborne polyurethane and biodegradable PBAT film. The FAD-binding oxidoreductase Oxr-1 was demonstrated to be the key enzyme mediating plastic degradation. Our study not only provided a good candidate for developing bio-products toward plastic degradation but also paved a way to investigate the carbon cycle mediated by plastic degradation in deep-sea microorganisms.


Assuntos
Plásticos , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Biodegradação Ambiental , Plásticos/metabolismo , Bactérias/metabolismo , Lipase/metabolismo , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Oxirredutases/metabolismo
10.
Microbiol Spectr ; : e0367822, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809047

RESUMO

As microbial sulfur metabolism significantly contributes to the formation and cycling of deep-sea sulfur, studying their sulfur metabolism is important for understanding the deep-sea sulfur cycle. However, conventional methods are limited in near real-time studies of bacterial metabolism. Recently, Raman spectroscopy has been widely used in studies on biological metabolism due to its low-cost, rapid, label-free, and nondestructive features, providing us with new approaches to solve the above limitation. Here, we used the confocal Raman quantitative 3D imaging method to nondestructively detect the growth and metabolism of Erythrobacter flavus 21-3 in the long term and near real time, which possessed a pathway mediating the formation of elemental sulfur in the deep sea, but the dynamic process was unknown. In this study, its dynamic sulfur metabolism was visualized and quantitatively assessed in near real time using 3D imaging and related calculations. Based on 3D imaging, the growth and metabolism of microbial colonies growing under both hyperoxic and hypoxic conditions were quantified by volume calculation and ratio analysis. Additionally, unprecedented details of growth and metabolism were uncovered by this method. Due to this successful application, this method is potentially significant for analyzing the in situ biological processes of microorganisms in the future. IMPORTANCE Microorganisms contribute significantly to the formation of deep-sea elemental sulfur, so studies on their growth and dynamic sulfur metabolism are important to understand the deep-sea sulfur cycle. However, near real-time in situ nondestructive metabolic studies of microorganisms remain a great challenge due to the limitations of existing methods. We thus used an imaging-related workflow by confocal Raman microscopy. More detailed descriptions of the sulfur metabolism of E. flavus 21-3 were disclosed, which perfectly complemented previous research results. Therefore, this method is potentially significant for analyzing the in-situ biological processes of microorganisms in the future. To our knowledge, this is the first label-free and nondestructive in situ technique that can provide temporally persistent 3D visualization and quantitative information about bacteria.

11.
mBio ; 13(4): e0014322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35852328

RESUMO

Zero-valent sulfur (ZVS) distributes widely in the deep-sea cold seep, which is an important immediate in the sulfur cycle of cold seep. In our previous work, we described a novel thiosulfate oxidation pathway determined by thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) mediating the conversion of thiosulfate to ZVS in the deep-sea cold seep bacterium Erythrobacter flavus 21-3. However, the occurrence and ecological role of this pathway in the deep-sea cold seep were obscure. Here, we cultured E. flavus 21-3 in the deep-sea cold seep for 10 days and demonstrated its capability of forming ZVS in the in situ field. Based on proteomic, stoichiometric analyses and microscopic observation, we found that this thiosulfate oxidation pathway benefited E. flavus 21-3 to adapt the cold seep conditions. Notably, ~25% metagenomes assembled genomes derived from the shallow sediments of cold seeps contained both tsdA and soxB, where presented abundant sulfur metabolism-related genes and active sulfur cycle. Our results suggested that the thiosulfate oxidation pathway determined by TsdA and SoxB existed across many bacteria inhabiting in the cold seep and frequently used by microbes to take part in the active cold seep biogeochemical sulfur cycle. IMPORTANCE The contribution of microbes to the deep-sea cold seep sulfur cycle has received considerable attention in recent years. In the previous study, we isolated E. flavus 21-3 from deep-sea cold seep sediments and described a novel thiosulfate oxidation pathway in the laboratorial condition. It provided a new clue about the formation of ZVS in the cold seep. However, because of huge differences between laboratory and in situ environment, whether bacteria perform the same thiosulfate oxidation pathway in the deep-sea cold seep should be further confirmed. In this work, we verified that E. flavus 21-3 formed ZVS using this pathway in deep-sea cold seep through in situ cultivation, which confirmed the importance of this thiosulfate oxidation pathway and provided an in situ approach to study the real metabolism of deep-sea microorganisms.


Assuntos
Proteômica , Tiossulfatos , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Filogenia , Enxofre/metabolismo , Tiossulfatos/metabolismo
12.
Front Microbiol ; 13: 868728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677903

RESUMO

Actinobacteria represent a large group of important prokaryotes with great application potentials and widely distribute in diverse natural environments including the ocean. However, compared to their terrestrial cultured members, there are much less available marine Actinobacteria, especially deep-sea counterparts. Here, we cultured a bacterial strain of deep-sea actinobacterium, Marmoricola sp. TYQ2, by using a basal medium supplemented with taurine. Consistently, the growth of strain TYQ2 was significantly promoted by the supplement of taurine. Transcriptomic analysis showed that the expressions of genes encoding proteins associated with taurine metabolization and utilization as well as energy generation were evidently up-regulated when taurine was added. Moreover, strain TYQ2 was demonstrated to degrade polyvinyl alcohol (PVA) with the involvement of the redox cycle of extracellular quinol and quinone and the reduction of iron to ferrous, and strain TYQ2 could utilize the degradation products for energy production, thereby supporting bacterial growth. Overall, our experimental results demonstrate the prominent degradation capabilities of Marmoricola sp. TYQ2 toward the organics taurine and PVA.

13.
J Hazard Mater ; 431: 128617, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35359103

RESUMO

Huge quantities of plastic wastes have been accumulating in the environment causing serious ecological problems and significantly impacting the global carbon cycling. Plastic pollutions have been recognized as the most common and durable marine contaminants. Consequently, the marine environment is becoming a hot spot to screen microorganisms possessing potential plastic degradation capabilities. Here, by screening hundreds of plastic waste-associated samples, we isolated a fungus (named Alternaria alternata FB1) that possessing a prominent capability of colonizing on the polyethylene (PE) film. Through Scanning Electron Microscope (SEM) observation, we found this fungus could efficiently degrade the PE film and formed numerous obvious holes in the plastic surface. Moreover, the Fourier Transform Infrared (FTIR) imaging detected absorption peak in the vicinity of 1715 cm-1, indicating the formation of carbonyl bonds (-CO-). Through X-Ray Diffraction (XRD) analysis, we found that the PE film treated by strain FB1 for 28 days showed an evident reduced relative crystallinity degree, resulting in a decrease from 62.79% to 52.02%. Strikingly, the molecular weight of PE film decreased 95% after 120 days treatment by strain FB1. Using GC-MS, we further clarified that a four-carbon product (named Diglycolamine) accounted for 93.28% of all degradation products. We defined 153 enzymes that potentially involved in the degradation of PE through a transcriptomic method. The degradation capabilities of two representative enzymes including a laccase (with a molecular weight about 59.49 kDa) and a peroxidase (with a molecular weight about 36.7 kDa) were verified. Lastly, a complete biodegradation process of PE was proposed. Given the extreme paucity of microorganisms and enzymes for effective degradation of PE in the present time, our study provides a compelling candidate for further investigation of degradation mechanisms and development of biodegradation products of PE.


Assuntos
Plásticos , Polietileno , Alternaria , Biodegradação Ambiental , Fungos/metabolismo , Polietileno/química
15.
mBio ; 13(2): e0028722, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35229635

RESUMO

"Candidatus Thermofonsia" represents a novel class within the phylum Chloroflexi. Metagenomic analysis reveals "Ca. Thermofonsia" harbors phototrophs outside the classically phototrophic Chloroflexia class. Unfortunately, the paucity of pure cultures limits further insights into their potential phototrophy. Here, we report the successful isolation of a "Ca. Thermofonsia" representative (Phototrophicus methaneseepsis ZRK33) from a deep-sea cold seep. Using combined physiological, genomic, and transcriptomic methods, we further show the long-wavelength light (e.g., red and infrared light) could promote the growth of strain ZRK33 and upregulate the expression of genes associated with phototrophy. In particular, strain ZRK33 has a typical phototrophic lifestyle under both laboratory and deep-sea conditions. Strain ZRK33 also possesses the ability to fix inorganic carbon through the 3-hydroxypropionate bicycle in both laboratory and deep-sea in situ environments, and the combined autotrophic, phototrophic, and heterotrophic capabilities endow strain ZRK33 with a photomixotrophic lifestyle. Notably, the predicted genes associated with phototrophy broadly exist in the metagenomes of 27 deep-sea Chloroflexi members, strongly suggesting diverse phototrophic Chloroflexi members are distributed in various unexplored deep biospheres. IMPORTANCE The deep ocean microbiota represents the unexplored majority of global ocean waters. The phylum Chloroflexi is abundant and broadly distributed in various deep-sea ecosystems. It was reported that some members of "Candidatus Thermofonsia" clade 2 might possess phototrophs; however, the absence of cultured representatives is a significant bottleneck toward understanding their phototrophic characteristics. In the present study, we successfully isolated a representative of the novel class "Ca. Thermofonsia" from a deep-sea cold seep by using an enrichment medium constantly supplemented with rifampicin, allowing researchers to isolate more Chloroflexi members in the future. Importantly, outside the classically phototrophic Chloroflexia class, we discover a novel phototrophic clade within the phylum Chloroflexi and demonstrate the existence of phototrophic lifestyles in the deep sea. Thus, this study expands the range of phototrophic Chloroflexi and provides a good model to study the mechanism of phototrophy performed in the deep biosphere.


Assuntos
Chloroflexi , Carbono , Chloroflexi/genética , Ecossistema , Metagenoma , Metagenômica
16.
mSystems ; 7(1): e0127921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35103488

RESUMO

Light is a ubiquitous energy source and environmental signal that broadly impacts the lifestyle of a large number of photosynthetic/nonphotosynthetic microorganisms living in the euphotic layer. However, the responses of deep-sea microbes to light are largely unknown, even though blue light is proposed to be distributed in the deep ocean. Here, we successfully cultured a novel bacterial species, named Spongiibacter nanhainus CSC3.9, from deep-sea cold seep samples by a blue light induction approach. The growth of strain CSC3.9 was obviously promoted by the illumination of blue light. We next determined BLUF (a typical blue light photoreceptor) was the most essential factor directing light sensing of strain CSC3.9 through a combined proteomic and genetic method. The function of light sensing mediated by BLUF was further confirmed by the in vitro-synthesized protein. Notably, homologs of BLUF widely existed across the marine microorganisms (containing Spongiibacter species) derived from different environments, including cold seeps. This strongly indicates that the distribution of light utilization by the nonphototrophic bacteria living in the ocean is broad and has been substantially underestimated. IMPORTANCE Extensive studies have been conducted to explore the mechanisms of light sensing and utilization by microorganisms that live in the photic zone. Strikingly, accumulated evidence shows that light is distributed in the deep biosphere. However, the existence and process of light sensing and utilization by microbes inhabiting the deep ocean have been seldom reported. In the present study, a novel bacterial strain, Spongiibacter nanhainus CSC3.9, was enriched and purified from a deep-sea cold seep sample through a blue light induction method. Combined with genomic, proteomic, genetic, and biochemical approaches, the mechanism of this novel strain sensing blue light through a BLUF-dependent pathway was detailed. Our study provides a good model to study the mechanisms of light sensing mediated by deep-sea nonphototrophic bacteria.


Assuntos
Bactérias , Proteômica , Luz
17.
Front Microbiol ; 13: 792755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185844

RESUMO

Under multiple stresses of deep sea, many microorganisms have evolved potentials to produce different metabolites to cope with the stresses they face. In this study, we isolated a bacterial strain Bacillus sp. YJ17 from the deep-sea cold seep. Compared with commercial food preservative nisin, it showed broad and strong antibacterial activities against foodborne pathogens, including multiple resistant bacteria Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA). The active agents were purified by reversed-phase high performance liquid chromatography (RP-HPLC). Analysis of high-energy collision induced dissociation mass spectrometry (HCD-MS) showed that the two active agents belong to family of fengycin and surfactin, and based on results of tandem mass spectrometry (HCD-MS/MS), the amino acid sequence of purified fengycin and surfactin might be Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Tyr-Ile and Glu-Leu/Ile-Leu/Ile-Leu/Ile-Val-Asp-Leu/Ile, respectively. Since the purified fengycin and surfactin exhibited strong inhibition against P. aeruginosa PAO1 and MRSA respectively, the inhibition mechanisms of fengycin against P. aeruginosa PAO1 and surfactin against MRSA were investigated by electron microscopy. After treatment with purified fengycin, the morphology of P. aeruginosa PAO1 became abnormal and aggregated together, and obvious cytoplasmic leakage was observed. After treatment with purified surfactin, the MRSA cells clustered together, and cell surface became rough and jagged. Further study showed that reactive oxygen species (ROS) accumulation and cell membrane damage occurred in P. aeruginosa PAO1 and MRSA after treated with fengycin and surfactin, respectively. Furthermore, typical ROS scavenging enzymes catalase (CAT) and superoxide dismutase (SOD) were also significantly reduced in P. aeruginosa PAO1 and MRSA after treated with fengycin and surfactin, respectively. Therefore, the inhibition mechanisms of fengycin against P. aeruginosa PAO1 and surfactin against MRSA are closely related with accumulation of ROS, which might be due to the decreased activity of CAT and SOD after treated with fengycin and surfactin, respectively. Overall, our study provides good candidates from the deep-sea environment to deal with foodborne pathogens, especially multidrug-resistant bacteria.

18.
Front Microbiol ; 12: 725159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899621

RESUMO

Resolving metabolisms of deep-sea microorganisms is crucial for understanding ocean energy cycling. Here, a strictly anaerobic, Gram-negative strain NS-1 was isolated from the deep-sea cold seep in the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NS-1 was most closely related to the type strain Halocella cellulosilytica DSM 7362T (with 92.52% similarity). A combination of phylogenetic, genomic, and physiological traits with strain NS-1, was proposed to be representative of a novel genus in the family Halanaerobiaceae, for which Iocasia fonsfrigidae NS-1 was named. It is noteworthy that I. fonsfrigidae NS-1 could metabolize multiple carbohydrates including xylan, alginate, starch, and lignin, and thereby produce diverse fermentation products such as hydrogen, lactate, butyrate, and ethanol. The expressions of the key genes responsible for carbohydrate degradation as well as the production of the above small molecular substrates when strain NS-1 cultured under different conditions, were further analyzed by transcriptomic methods. We thus predicted that part of the ecological role of Iocasia sp. is likely in the fermentation of products from the degradation of diverse carbohydrates to produce hydrogen as well as other small molecules, which are in turn utilized by other members of cold seep microbes.

19.
J Hazard Mater ; 416: 125928, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34489083

RESUMO

Plastic wastes are becoming the most common form of marine debris and present a growing global pollution problem. Here, we used a screening approach on hundreds of plastic waste-associated samples and discovered a marine bacterial community capable of efficiently colonizing and degrading both poly(ethylene terephthalate) (PET) and polyethylene (PE). Using absolute quantitative 16S rRNA sequencing and cultivation methods, we obtained corresponding abundance and purified cultures of three bacterial strains that mediated plastic degradation. We further performed numerous techniques to characterize the efficient degradation of PET and PE by the reconstituted bacterial community containing these three bacteria. Additionally, we used liquid chromatography-mass spectrometry to further demonstrate the degradation of PET and PE films by the reconstituted bacterial community. We conducted transcriptomic methods to investigate the plastic degradation process and potential degradation mechanisms mediated by our reconstituted bacterial community. Lastly, we overexpressed PE degradation enzymes based on transcriptomic results and verified their significant degradation effects on the PE films. Overall, our study establishes a stable marine bacterial community that efficiently degrades PET and PE and provides insights into plastic degradation pathways and their associated biological and mechanistic processes-paving the way for developing microbial products against plastic wastes.


Assuntos
Polietilenotereftalatos , Polietileno , Bactérias/genética , Biodegradação Ambiental , Etilenos , Ácidos Ftálicos , Plásticos , RNA Ribossômico 16S/genética
20.
J Biol Chem ; 297(4): 101133, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461092

RESUMO

Many natural polysaccharides have significant anticancer activity with low toxicity, but the complex chemical structures make in-depth studies of the involved mechanisms extremely difficult. The purpose of this study was to investigate the effect of the marine bacterial exopolysaccharide (exopolysaccharide 11 [EPS11]) on liver cancer metastasis to explore the underlying target protein and molecular mechanism. We found that EPS11 significantly suppressed cell adhesion, migration, and invasion in liver cancer cells. Proteomic analysis showed that EPS11 induced downregulation of proteins related to the extracellular matrix-receptor interaction signaling pathway. In addition, the direct pharmacological target of EPS11 was identified as collagen I using cellular thermal shift assays. Surface plasmon resonance and pull-down assays further confirmed the specific binding of EPS11 to collagen I. Moreover, EPS11 was shown to inhibit tumor metastasis by directly modulating collagen I activity via the ß1-integrin-mediated signaling pathway. Collectively, our study demonstrated for the first time that collagen I could be a direct pharmacological target of polysaccharide drugs. Moreover, directly targeting collagen I may be a promising strategy for finding novel carbohydrate-based drugs.


Assuntos
Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Integrina beta1/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Polissacarídeos Bacterianos/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...